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Abstract

Background: Most retinal ganglion cells (RGCs) convey contrast and motion information to visual brain centers.
Approximately 2% of RGCs are intrinsically photosensitive (ipRGCs), express melanopsin and are necessary for light
to modulate specific physiological processes in mice. The ipRGCs directly target the suprachiasmatic nucleus (SCN)
to photoentrain circadian rhythms, and the olivary pretectal nucleus (OPN) to mediate the pupillary light response.
How and when this ipRGC circuitry develops is unknown.

Results: Here, we show that some ipRGCs follow a delayed developmental time course relative to other image-
forming RGCs. Specifically, ipRGC neurogenesis extends beyond that of other RGCs, and ipRGCs begin innervating
the SCN at postnatal ages, unlike most RGCs, which innervate their image-forming targets embryonically. Moreover,
the appearance of ipRGC axons in the OPN coincides precisely with the onset of the pupillary light response.

Conclusions: Some ipRGCs differ not only functionally but also developmentally from RGCs that mediate pattern-
forming vision.

Background
The mammalian retina detects, processes, and signals
light information to the brain to form images and mod-
ulate physiological processes. As the sole output neu-
rons of the retina, most retinal ganglion cells (RGCs)
encode visual information such as motion and contrast,
whereas 2% of RGCs contain the photopigment mela-
nopsin and signal irradiance information to the brain to
control circadian rhythms, sleep, and the pupillary light
response (PLR) [1-4]. These intrinsically photosensitive
RGCs (ipRGCs) project directly to brain regions that
mediate light-dependent physiological processes, notably
the suprachiasmatic nucleus (SCN), which is the master
circadian pacemaker, and the olivary pretectal nucleus
(OPN), which controls PLR [5,6]. Genetic ablation of
ipRGCs leaves image formation intact, but severely
impairs the effects of light on circadian rhythms, sleep,
and PLR [3,4]. Thus, the pathways for light input to

image-formation and regulation of physiological pro-
cesses diverge at the level of the RGCs.
Until recently, the majority of research on ipRGCs has

focused on the initially identified subtype (M1), which
arborizes in the OFF sublamina of the inner plexiform
layer and labels with expression of the tauLacZ reporter
from the endogenous melanopsin locus (Opn4taulacZ).
However, a more sensitive reporter system utilizing
expression of cre recombinase from the endogenous
melanopsin locus (Opn4cre) revealed additional subtypes
of ipRGCs beyond the previously identified M1 subtype.
Some of these newly identified subtypes target the dor-
sal lateral geniculate nucleus (dLGN), a thalamic relay
center for visual processing. This work also demon-
strated that ipRGCs are capable of supporting visual
processing, indicating that some ipRGCs have overlap-
ping targeting and function with other RGCs [7].
How ipRGCs develop in order to fulfill their unique

physiological functions remains unclear. To begin
answering this question, we examined the timing of
ipRGC neurogenesis, axonal targeting, and the develop-
mental onset of pupil constriction, an ipRGC-mediated
functional output.
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Results
Birth of ipRGCs continues beyond that of other RGCs
To compare ipRGC neurogenesis with other RGCs, we
labeled terminally dividing cells with 5-ethynyl-2’-
deoxyuridine (EdU) on individual days of embryonic
development (Figure 1A,B). We used immunostaining for
the transcription factor Brn3a to label a subset of RGCs
separate from ipRGCs [8] and the melanopsin-tau-LacZ
(Opn4tauLacZ/+) reporter to detect ipRGCs. The tau-lacZ
reporter expresses tau-b-galactosidase, which is cyto-
plasmic and is predominantly trafficked to axons. The
Opn4tauLacZ/+ reporter primarily labels the M1 subtype in
adult mice [9], but it remains unclear if this holds true
during development since ipRGC subtypes cannot be
anatomically identified prior to dendritic arborization.
Tissue was analyzed at postnatal day 0 (P0), which is a
time point after RGC birth but before the major wave of
RGC death [10,11]. The onset of ipRGC neurogenesis is
consistent with that observed for Brn3a-positive RGCs as
well as the RGC population as a whole, which begins at
embryonic day 11 (E11) [11,12]. EdU injections on subse-
quent days during development revealed that the major-
ity of ipRGCs are born from E11 to E14 (Figure 1C;
Additional file 1). Although the Brn3a population shows
a sharp decline in birth after E15, with only one positive
cell observed at E16, a significant proportion of ipRGCs
are born through E18 (Figure 1B,C).
To determine when melanopsin is first expressed in

the developing retina, we used three different labeling
methods: a melanopsin antibody and two genetic repor-
ter mouse lines, Opn4tauLacZ/+ [5] and Opn4Cre/+ in con-
junction with the Z/AP reporter, which does not depend
on transcription of the melanopsin locus for signal
strength [7,13]. All three labeling techniques indicated
that melanopsin is expressed from E15 onwards since
there was a complete absence of staining at E14 (Figure
1D-F). Melanopsin expression is first detected at a simi-
lar time point in rats [14]. While it is possible that mela-
nopsin is expressed at low levels prior to E15, it is
unlikely because the genetic reporters used in this study
have high sensitivity due to enzymatic signal amplifica-
tion. At E15 some melanopsin-positive cells were
detected in the ganglion cell layer, while others appeared
to be migrating from the neuroblast layer to the gang-
lion cell layer (Figure 1D-F, arrows). Although melanop-
sin positive cells were absent from the peripheral retina
at E15, during subsequent days of development the
region of labeled cells subsequently expanded (Figure
1G, arrows), reaching the ciliary margin by P0.

ipRGCs innervate their main target, the suprachiasmatic
nucleus, postnatally
To determine when RGC axonal projections from the
eye reach the SCN, we used four different labeling

methods. Total RGC axonal projections were labeled
with cholera toxin B subunit (CTB), which revealed that
RGC axons begin to innervate the contralateral borders
of the SCN soon after birth (Figure 2A), similar to rats
[15,16]. At P3 to P4 axons from both eyes emerged at
the midline to provide bilateral innervation of the SCN
beginning caudally and achieving an adult-like pattern
by the second postnatal week. To specifically label
ipRGC axons, we used the Opn4tauLacZ/+ mice, which
directly report transcription from the melanopsin locus
and the Opn4Cre/+;Z/AP reporter, which does not
depend on the melanopsin locus for signal strength. The
innervation patterns revealed by all three labeling meth-
ods are identical (Figure 2A-C) and directly correspond
to the spatial and temporal progression of cFos induc-
tion in the SCN by light in early postnatal mice [17].
Even though the SCN is innervated postnatally (Figure
2A-C), ipRGC axons are present in the chiasm on the
ventral surface of the SCN as early as E17 (Figure 3). In
contrast, axons from cholera toxin labeled RGCs have
already entered more caudal targets, such as the lateral
geniculate nucleus and the pretectum by P1 (Figures 2D
and 4A) [18]. To directly compare the innervation pat-
terns of ipRGCs to a larger population of RGCs, we
used an alkaline phosphatase reporter that labels RGCs
positive for the transcription factor Brn3b (Figure 2E)
[18]. We confirmed that the SCN is innervated later
than visual targets such as the LGN, where fibers enter
by P1, and the pretectum, where fibers enter by E17
(Figure 2F, arrows). Serial sections at different develop-
mental time points reveal the complete spatial and tem-
poral progression of Opn4tauLacZ/+-labeled axons in the
SCN (Figure 3).

Onset of the pupillary light response corresponds to
emergence of ipRGC axons in the OPN shell
Next we used CTB, Opn4tauLacZ/+, and Opn4Cre/+;Z/AP
labeling techniques to determine the development of
retinal projections to the OPN, which mediates the PLR
[19]. Both CTB labeling of RGC axons and Opn4Cre/+;Z/
AP labeling of ipRGC axons revealed innervation of the
OPN from birth, achieving an adult-like morphology by
P7 (Figure 4A,B). In contrast to this early postnatal
labeling throughout the OPN (Figure 4A,B), the Opn4-
tauLacZ/+-labeled ipRGC axons showed only faint labeling
in the shell of the OPN starting at P7 and reached adult
morphology at P14 (Figure 4C). Similarly, Opn4Cre/+;Z/
AP-labeled ipRGC axons are present throughout the
LGN from birth, including the dorsal LGN, which is an
important relay for visual information. In contrast, the
Opn4tauLacZ/+-labeled ipRGC axons do not begin to
appear in the intergeniculate leaflet of the LGN until
about P3 (Figure 5). Thus, for both the OPN and the
LGN, the Opn4tauLacZ/+-labeled ipRGC axons appear to
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Figure 1 Birth and melanopsin expression of ipRGCs. (A,B) The birthdates of ipRGCs were compared to Brn3a-positive RGCs (representative
images in (A), paradigm in (B)). (C) For each time point, we determined the proportion of ipRGCs labeled with EdU; asterisks indicate significant
difference between ipRGCs and Brn3a (t-test, P < 0.05). Representative sections with double-labeled RGCs (yellow arrowheads) and EdU-negative
RGCs (white arrows) from postnatal day 0 (P0) retinas pulsed with EdU at embryonic day 15 (E15) are shown in (A). Note that the ipRGC marker
beta-galactosidase (b-gal), is cytoplasmic, while Brn3a and EdU are nuclear. For all EdU time points, n = 3 to 4 retinas per time point, mean ±
standard error of the mean. (D-F) Melanopsin (Opn4) expression begins at E15 based on immunofluorescence (D), and the MelanopsinCre/+;Z/AP
(E) and MelanopsintauLacZ/+ genetic labeling methods (F). The MelanopsinCre/+;Z/AP labels all ipRGC subtypes and does not depend on the
melanopsin locus for signal strength. Arrows in D-F denote migrating cells. GCL; Ganglion Cell Layer and RPE; Retinal Pigmented Epithelium.
(G) Coronal sections from MelanopsintauLacZ/+ mice show an initial lack of ipRGCs in the periphery at E15, which is entirely filled in by P0 (arrows; D,
dorsal; V, ventral). Note the lack of X-gal staining within the central optic nerve at E18 (G, green arrowhead). Scale bars: 50 μm (A,D-F); 100 μm (G).
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innervate these regions later than the other ipRGC
axons that label with the Opn4Cre/+;Z/AP reporter.
Next we determined if the appearance of ipRGC axons

in the OPN correlates with the onset of the functional
output of the OPN, the PLR. Under high light intensity
(1.35 × 1016 photons/cm2 s), we observed rudimentary
PLR starting at P7 and substantial responses from P10
onwards (representative images shown in Figure 4E,
data summarized in Figure 4F). This onset of the PLR is
similar to that in rats [20]. The lack of PLR prior to P7
was not limited by development of the ciliary muscle
since from P6 to P8 the cholinergic agonist carbachol
constricted the pupil significantly more than light (one-
way ANOVA, P < 0.0001; Tukey post hoc, P < 0.001).

From P10 onwards, the light intensity we used con-
stricted the pupil to levels similar to carbachol, indicat-
ing that it is bright enough to cause maximal
constriction (one-way ANOVA, Tukey post hoc, P >
0.05 for P10 to P14). Interestingly, we noticed a baseline
constriction of the pupil in the dark before light expo-
sure from P9 to P14, perhaps caused by holding the lid
margins open (see Materials and methods and paradigm
in Figure 4D). This constriction was always significantly
less than the constriction due to light (one-way
ANOVA, P < 0.0001; Tukey post hoc, P < 0.01 for P7
and P < 0.001 for P8 to P14). Application of the topical
anesthetic proparacaine did not have a significant effect
on this baseline constriction; thus, it was unlikely to be

Figure 2 ipRGCs innervate the suprachiasmatic nucleus postnatally. Innervation of the suprachiasmatic nucleus (SCN) begins at P0 and
continues throughout the first two postnatal weeks. (A) Labeling of all RGCs in coronal sections with fluorescently labeled cholera toxin B
subunit (CTB), one color per eye. Retinal fibers fill the SCN by P7 and innervation becomes bilateral by P14. Note that for CTB labeling, a P0 time
point was not possible due to the survival period required for the tracer to label distal axons. (B,C) Labeling of ipRGCs and their axons with
both MelanopsinCre/+;Z/AP (B) and MelanopsintauLacZ/+ (C) reveals a similar innervation pattern. (D-F) In contrast, CTB labeling reveals RGC axons
have already penetrated the LGN by P1 (D), and genetic labeling of Brn3b-positive RGCs (E) reveals that this subset of RGCs begins entering the
pretectum as early as E17 (F). Arrows indicate fibers entering target area. n = 3 or more animals for each time point. OT, optic tract; dashed
outlines demarcate the SCN prior to innervation in (A,B). Scale bars: 100 μm (A-C); 500 μm (F).
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caused by the direct sensation of the forceps (data not
shown). In conclusion, light consistently induced pupil
constriction starting at P7, coincident with the appear-
ance of ipRGC axons in the shell of the OPN, a crucial
connection in the PLR circuit [4,9].

Discussion
Over a century of research has focused on the develop-
ment of RGCs and their role in image formation.
Work over the last decade has revealed an intrinsically
photosensitive subset of RGCs (ipRGCs) that signal
irradiance information to brain regions that modulate
processes such as sleep, circadian rhythms, and PLR
[3,4]. Here, we provide the first direct examination of
ipRGC birth and axonal targeting in the brain. Our
data reveal a broad diversity of developmental para-
meters within the ipRGC population, with the develop-
ment of some ipRGCs diverging from the majority of
other RGCs.

A subset of ipRGCs is born later than other RGCs
Previous studies have shown that RGCs are born
between E11 and E18 [12,21]. We find that most
ipRGCs are born between E11 and E15, similar to other
RGCs [11,12,21]. In stark contrast to the Brn3a-positive
RGCs, we observe a significant amount of ipRGC neuro-
genesis after E15 (Figure 1C). Interestingly, Math5, a
transcription factor involved in RGC fate determination,
is downregulated at E16 [22]. Thus, this late born
ipRGC cohort may be specified independent of Math5.
In agreement with this idea, some ipRGCs remain in the
Math5 knockout [23]. The early born ipRGCs may share
an overlapping function with other RGCs, such as the
ipRGCs that are capable of supporting pattern vision
[7], and the later born ipRGCs may preferentially target
non-image forming areas that are innervated later, such
as the SCN and the shell of the OPN. Such a divergence
could be determined by the identification of molecular
markers for individual ipRGC subtypes.

Figure 3 Spatial and temporal progression of SCN innervation. Serial 50-μm coronal sections from individual brains of MelanopsintauLacZ/+

mice at different time points reveal the spatial and temporal progression of ipRGC innervation of the SCN. Nuclei are counterstained with Vector
Nuclear Fast Red. Scale bar: 100 μm.
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The SCN is innervated later than image-forming retinal
targets
During embryonic development, the majority of RGC
axons project through the optic chiasm past the overly-
ing SCN to target visual brain centers such as the LGN
and the superior colliculus (Figure 2F) [15,16,24,25]. In
contrast, cholera toxin labeling of RGC fibers showed
that retinal axons enter the SCN postnatally. The lateral
edges of the SCN fill first according to CTB labeling
and both the Opn4tauLacZ/+ and Opn4Cre/+;Z/AP repor-
ters, which in turn closely match a previous report that

exposure to bright light can induce cFos expression in
the lateral edges of the SCN in newborn mice [17]. The
spatio-temporal agreement of ipRGC axonal labeling
with the induction of cFos expression by light supports
the well-established idea that most of the RGCs that
innervate the SCN express melanopsin [4-6,9,26].
There are at least three possible explanations for this

later innervation of the SCN by ipRGCs. First, ipRGC
axons may follow a later time course compared to other
RGCs. Such a delay in targeting would correspond with the
later born ipRGCs we observe. Second, ipRGC axons that

Figure 4 Olivary pretectal nucleus innervation and onset of pupillary light responses. (A) The olivary pretectal nucleus (OPN) is innervated
by CTB-labeled RGC axons at P0 and ipsilateral and contralateral axons have segregated by P7. (B) MelanopsinCre/+;Z/AP-labeled axons show a
similar innervation pattern from birth. (C) In contrast, MelanopsintauLacZ/+-labeled axons are not detected until P7 and show adult-like innervation
of the OPN shell by P14. (D,E) The paradigm used for all pupil measurements (D) and representative images (E). Note that the pupil appears
white at P7 because at this early time point it was necessary to reflect infrared light off the back of the eye to make the iris visible to the
camera. Carbachol was used to induce maximal constriction of the ciliary muscle. (F) Percent constriction of pupil was measured and the
summary of data for PLR is shown. Significant light responses are detected from P7 onward (n = 3 or more mice per time point, one-way
ANOVA with Tukey post hoc test, error bars are mean ± standard error of the mean). No baseline constriction was observed in adult mice. Scale
bars: 100 μm (A-C).
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innervate the SCN may reach the chiasm earlier in devel-
opment, but stall there until P0. Though we do observe
ipRGC axons in the chiasm ventral to the SCN from E17,
it remains to be determined if these specific ipRGC axons
subsequently innervate the SCN (Figure 3). It is doubtful
that innervation of the SCN is dependent upon functional
maturation of target cells since the SCN begins oscillating
before birth [27,28]. Finally, the SCN could be innervated
by collaterals from RGC axons that have already passed
through the chiasm to more distal targets in the LGN, pre-
tectum or colliculus [29,30]. Indeed, such a delay in col-
lateralization of RGC axons into the SCN has previously
been reported [15]. Since most RGC axons pass by the
SCN to enter visual targets embryonically (Figure 2F), this
temporal separation could be a means for preventing non-
ipRGC axons from aberrantly terminating in the SCN. If
this is the case, the ipRGCs that innervate the SCN may be
uniquely receptive to a yet undetermined signal from the
SCN. Expression of such factors may complement the spa-
tial and temporal characteristics of ipRGC innervation of
the SCN during development (Figure 3).

Onset of PLR correlates with emergence of ipRGC axons
in the OPN shell
The PLR is mediated by retinal input to the OPN, which
can be divided into core and shell regions. The shell is
defined by parvalbumin and calbindin-D expression [31,32],
and is innervated by the M1 subset of ipRGCs, which label
with Opn4tauLacZ/+ [6,9]. This connection of M1 ipRGCs to
the OPN shell is crucial to the PLR circuit, since genetic
ablation of the Opn4tauLacZ/+-labeled ipRGCs results in
severe impairment of the pupillary light response [4].

In agreement with these data, the Edinger-Westphal
nucleus, which is the brain relay downstream of the OPN
in the PLR circuit, is primarily innervated by axons from
neurons in the shell of the OPN [9].
Our data suggest that two subtypes of ipRGCs inner-

vate the OPN with different spatial and temporal profiles.
CTB labeling of RGC axons and Opn4Cre/+;Z/AP labeling
of all ipRGCs reveal robust innervation of the OPN from
birth. In contrast, the Opn4tauLacZ/+ reporter only shows
labeling of ipRGC axons in the OPN starting in the sec-
ond postnatal week. This delayed labeling is limited to
the shell region of the OPN, similar to adult labeling with
the Opn4tauLacZ/+ reporter [5,6]. Thus, it appears that the
M1 ipRGCs innervate the OPN shell later than the
ipRGCs that innervate the core. We observe a similar
temporal separation between Opn4Cre/+;Z/AP-labeled
ipRGCs that innervate the LGN and the Opn4tauLacZ/
+-labeled subset that innervate the intergeniculate leaflet
(Figure 5). Thus, the Opn4Cre/+;Z/AP reveals that the
ipRGCs that innervate classical visual targets such as the
dLGN follow a developmental paradigm similar to other
RGCs, while the Opn4tauLacZ/+ labeled ipRGCs appear to
innervate their specific targets later.
To explore the functional output of the differing ipRGC

projections to the OPN, we measured the PLR of postnatal
mice. We first detected a rudimentary PLR at P7, coinci-
dent with the appearance of the Opn4tauLacZ/+-labeled
axons in the OPN shell. Although we cannot rule out the
role that other relay centers play in determining the onset
of PLR, it is striking that the onset of PLR coincides with
the appearance of Opn4tauLacZ/+-labeled axons in the
OPN, a crucial connection for the PLR.

Figure 5 ipRGC innervation of the LGN. Comparison of LGN innervation by Opn4tauLacZ/+-labeled ipRGC axons and Opn4Cre/+;Z/AP labeling of
total ipRGC axons across postnatal development. Arrows denote the intergeniculate leaflet, which separates the dorsal and ventral LGN. Scale
bar: 100 μm.
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This early PLR must be driven by melanopsin since it
accounts for all retinal photoreception through at least
P10 [17,33,34] and synaptic connections between retinal
layers are not functional until eye opening at P12 to P14
[35]. While it remains unclear why PLR begins several
days prior to eye opening, it agrees with mounting evi-
dence that ipRGCs comprise the first functioning photo-
receptive system during development [17,34].

Conclusions
Together, these data indicate diversity in the develop-
mental trajectory of ipRGCs and form a foundation to
explore the molecular mechanisms that govern the spe-
cification and wiring of this distinct visual subsystem.

Materials and methods
Animals
All procedures were performed on mice bred on a
mixed C57BL/6x129 background in accordance with the
IACUC protocols of Johns Hopkins University and Vir-
ginia Commonwealth University Medical Center. All
mice were housed in a 12:12 hour light:dark cycle.

X-gal staining
Tissue from Opn4tauLacZ/+ mice was prepared as pre-
viously described [6], stained for 2 days in X-gal and
counterstained with Vector Nuclear Fast Red.

Alkaline phosphatase labeling
We used previously generated mice that express Cre
recombinase from the endogenous melanopsin locus [7].
The experimental animals used in this study were obtained
by mating Opn4Cre/Cre mice to Z/AP reporter mice [13].

Eye injections
To visualize retinofugal projections originating from
each eye, intravitreal injections of the fluorescently con-
jugated anterograde tracer CTB were performed as
described in [36]. Animals were given an 18- to 36-hour
survival period.

Melanopsin immunolabeling
Tissue was cryosectioned at 16 μm in the coronal plane
and stained with rabbit a-melanopsin (1:2,000; a gift
from I Provencio) and incubated on slides for 4 days at
4°C. Slides were incubated with donkey-anti-rabbit
Alexa 488 (1:500; Molecular Probes; Carlsbad, CA USA).
Slides were mounted in AntiFade (Molecular Probes)
with DAPI.

Birthdating
Females pregnant with Opn4tauLacZ/+ pups were injected
with EdU (Invitrogen; Carlsbad, CA USA) every 3 hours
over a 24-hour period [12]. Tissue was collected at P0,

sectioned at 18 μm in the coronal plane, and stained
with chicken anti-b-galactosidase (1:600; Millipore; Bill-
erica, MA USA) or mouse anti-Brn3a (1:25; Millipore)
incubated overnight at 4°C followed by donkey anti-
chicken Alexa 546 (1:500; Molecular Probes) or goat
anti-mouse Alexa 546 (1:500; Molecular Probes). Sec-
tions were imaged at 40× with a Zeiss LSM 510 META
confocal microcsope. The proportion of ipRGCs or
Brn3a-positive cells born on a specific day was deter-
mined for samples of more than 100 cells per retina.

Pupillary light response
PLR was evoked using a 473-nm light-emitting diode at
1.35 × 1016 photons/cm2·s, [37]. To view the pupil
before natural eye opening (P12 to P14), it was neces-
sary to separate the eyelids along the line of fusion and
gently hold them open with curved forceps. All animals
were dark-adapted for at least 1 hour before measure-
ments, which were restricted to the middle of the light
portion of the day. One eye of each mouse was moni-
tored under infrared light with a Sony DCR-HC96 video
camera. The percentage of pupil constriction was calcu-
lated by comparing the pupil area at the end of each
treatment to the pupil area in the dark at the beginning
of the recording. To measure any baseline constriction
due to handling or other non-light stimuli, percent con-
striction was measured after holding the mouse in the
dark for 20 seconds. To measure the percent constric-
tion due to light, the pupil area was measured after
30 seconds of light exposure in the opposite eye. To
measure maximal pupil constriction, 1 to 2 μl of
100 mM carbachol was applied to one eye 5 minutes before
measurement (Figure 4D). Individual video frames were
captured from the beginning and end of the 20 seconds
recorded in the dark, at the end of the 30 seconds of
light, and 5 minutes after the application of carbachol.
Topical application of 0.5% proparacaine was used to
determine if the baseline constriction was due to sensa-
tion of the forceps used to hold the eye open.

Additional material

Additional file 1: RGC and ipRGC birthdating. (A,B) Series of
representative images for birthdating of b-galactosidase-positive ipRGCs
(A) and Brn3a-positive RGCs (B) at P0. Yellow arrowheads denote EdU-
positive ipRGCs or Brn3a-positive RGCs, and white arrows denote EdU-
negative cells. (C,D) Raw cell counts and proportions of EdU-positive
ipRGCs (C) and Brn3a-positive RGCs (D). Scale bars: 50 μm.

Abbreviations
CTB: cholera toxin B subunit; dLGN: dorsal lateral geniculate nucleus; E:
embryonic day; EdU: 5-ethynyl-2’-deoxyuridine; ipRGC: intrinsically
photosensitive retinal ganglion cell; LGN: lateral geniculate nucleus; OPN:
olivary pretectal nucleus; P: postnatal day; PLR: pupillary light response; RGC:
retinal ganglion cell; SCN: suprachiasmatic nucleus.
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